
Complexity and Control in a Software
Improvisation Environment

Christopher Burns, University of Wisconsin-Milwaukee (cburns@uwm.edu)

Abstract: Kepler's Monsters is a software improvisation environment comprised of synthesis and signal
processing modules that can be activated, interconnected, and arranged in various feedback loops by the
performer. The performer assigns rhythmic profiles to active modules; these profiles then trigger the
algorithmic generation of the sound-defining parameters. The potential for rhythmic counterpoint exists
not only between materials (four independent processing chains are available for layering), but also among
different timbral aspects of a single sound event. This paper describes the design of the software, and the
tools it provides to manage complexity and unpredictability.

1 Introduction: Design Goals
Kepler's Monsters is a software improvisation
environment, designed for musical expression by
a single performer or in an ensemble setting.
Kepler's is one of a series of works responding to
the challenges of laptop performance, open form,
and improvisation; other software projects in the
group include Lattice (2004) and Periodic Table
(2006) [Burns 05].

A number of goals guided the design of the
Kepler's software. One of the most important
was unpredictability - surprising sonic and
musical behavior that makes the software as
much "performer" as "instrument." Unexpected
materials and developmental processes work to
foster a feeling of improvisational dialogue
between the performer and the instrument,
discourage the facility of improvisational clichés
and rehearsed gambits, and encourage formal
exploration in performance. David Tudor's
"performance compositions," especially
Toneburst, were an important inspiration for this
relinquishing of control. Ron Kuivila describes
Tudor's live electronic music as "a musical
situation in which advance planning is only
partially useful, perfect compliance is
impossible, and the concepts of contingency and
action are essential" - all desirable outcomes for
Kepler's Monsters, and ways in which laptop
performance more generally might rejuvenate
and participate in the tradition of open-form
music [Kuivila 04].

A second key objective for Kepler's Monsters
was to develop the entire sound-generating
apparatus as an integrated, highly idiosyncratic
feedback network. After several years of
experimentation with feedback networks as one
sonic element within a larger set of possibilities,
it seemed possible to treat the entire set of sound
generating and processing modules as nodes of
an all-encompassing network [Burns 03].
Feedback structures naturally encourage the kind

of unpredictability sought for the Kepler's
system; they also produce flexible, variable, and
articulate pitch and timbral contours. The
concept of a feedback loop also informed the
model of interaction between the performer and
the software; the Kepler's electronics are
designed to follow the performer's musical
intentions, but also to channel, divert, and resist
them, depending upon the overall state of the
feedback network. Models for this push-pull
interactive relationship include Tudor's
Toneburst, George Lewis' Voyager, and Luigi
Nono's La Lontananza Nostalgica Utopica
Futura [Lewis 00].

A third design goal for the software was
multiplicity: the software should be able to
produce several simultaneous textural layers in
counterpoint, with complex melodic, rhythmic,
and timbral expressions taking place in each
individual layer. This polyphonic conception
drove a number of decisions about the synthesis
engine and the user interface; in particular, the
proliferation of sound-defining parameters
across four semi-independent textural layers
necessitated some of the algorithmic parameter
generation and higher-level user interface
strategies.

Two other criteria deserve mention. The Kepler's
software generates sound without the use of
samples; prerecorded material seemed
antithetical to an "anything-can-happen" spirit of
improvisation. And on a more practical level, the
software is designed for performance using only
the resources of a laptop. While a QWERTY
keyboard is not the most obviously musical
interface, it has the advantages of familiarity and
accessibility (what Sergi Jorda terms
"efficiency"), and the advantages of a highly
portable, self-contained environment are too
great to resist [Jorda 04a].

2 Synthesis Engine
Kepler's Monsters is implemented in the Pd
computer music environment [Puckette 96]. Pd
facilitates rapid prototyping, is cross-platform,
and is free and open-source software.

Sound generation in Kepler's begins from four
discrete synthesis sources. There are ten
synthesis types available for each of the four
sources: three sinusoidal oscillator types, two
pulse-train oscillator types, two noise models,
and three percussive models. The oscillators
include a sine oscillator with waveshaping for
additional harmonics, a basic frequency
modulation carrier/modulator pair, and an FM
carrier/modulator pair incorporating glissando.
The first pulse-train oscillator drives a resonant
bandpass filter, while the second drives a comb
filter. The noise models include bandpass
filtered noise which is then ring modulated three
times in series by a single oscillator, and a
simplified "flute-like" waveguide model. The
percussive models include Karplus-Strong
synthesis, an oscillator frequency-modulated by
noise, and an FM bell model corresponding to
John Chowning's recipe [Chowning 73].

Each of the four synthesis sources feeds into its
own fixed sequence of nine signal-processing
modules. In order, each chain of modules
consists of:

1. a discretely-variable frequency
modulation operator (applied to arbitrary
synthesis input by means of a interpolating
variable-length delay line),

2. a continuously-variable FM operator
(tending to produce glissandi),

3. a continuously-variable bandpass filter,
4. a discretely-variable bandpass filter,
5. a continuously-variable waveguide-like

feedback/delay structure,
6. a gate,
7. a continuously-variable amplitude

envelope,
8. a delay line with regenerative echo, plus

the idiosyncratic feature that it adds percussive
clicks to its output when sweeping to a new
delay length, and

9. a delay line with regenerative echo.
Each module has two states - active and
bypassed - and each module can be switched on
and off independently.

These four signal chains (each comprised of the
sequence of nine signal-processing modules
enumerated above) can then be interconnected to
form the unified feedback network. The output
of each signal-processing chain can be routed to
the input of the two "adjacent" chains (the output
of chain one can be fed into the inputs of chain

four and chain two, the output of chain two can
be feed into the inputs of chain one and chain
three, etc.) The output of each chain can also be
routed to the inputs of any or all of its own
modules. In both cases, a time-varying delay is
inserted into the feedback loop to preserve
causality, and a compressor/limiter is applied to
the signal chain output to prevent runaway
amplitudes. As a result of this arrangement, all
of the signal processing modules can be
connected to one another, either directly or
indirectly. Only the four synthesis sources exist
outside the global feedback network (necessarily
- without some initial injection of signal, an all-
digital feedback network will only output
silence).

Kepler’s Monsters offers two options for the
spatialization of its output. For stereo diffusion,
the four signal chain outputs are panned to
equally-spaced fixed positions within the stereo
field. For quadraphonic diffusion, each signal
chain output is routed to its own loudspeaker.
While there is no explicit motion within the
system, the propagation of sound around the
feedback network often results in the sensation
of spatial animation.

3 Algorithmic Parameter Generation
The audio engine for Kepler's Monsters includes
a large number of sound-defining parameters.
With the exception of the simplest modules (gate
and amplitude envelope), there are several
parameters for each signal-processing module,
and even more for the synthesis sources.
Multiplied by the four signal chains, there are
too many parameters for one performer to
reasonably control. Instead, Kepler's generates
these parameters algorithmically, and provides
the performer with higher-level control over the
temporal behavior of the algorithms.

Kepler's includes nine rhythmic generators
(hereafter referred to as "timebases"). Each
timebase takes two parameters: a rhythmic
behavior, and a value from one to ten expressing
a range of durations (with one having the
shortest minimum and maximum duration, and
ten having the longest). There are ten rhythmic
behaviors:

1. "periodic" - strictly periodic events (with
the period chosen randomly from within the
performer-specified duration range),

2. "tuplet" - a shifting periodicity,
encompassing various integer subdivisions of a
slower basic tempo chosen randomly from
within the duration range,

3. "random" - random durations generated
inside the range,

4. "randomwalk" - randomly walking
between durations inside the range,

5. "lfo" - durations following a sinusoidal
curve inside the limits of the range,

6. "growing" - continuously increasing
durations (reset to a small value when they cross
the range maximum),

7. "shrinking" - continuously decreasing
durations (reset to a large value when they cross
the range minimum),

8. "phrase" - state-machine logic defining
transitions between "short", "medium", and
"long" value types (with the actual values
randomly generated based upon the range),

9. "meta" - random walk transitions between
the previous eight timebase types (in the order
presented),

10. "reservoir" – randomly selecting one of a
small set of duration values, and occasionally
overwriting values in the set with new randomly
determined durations (from inside the range).

The actual minimum and maximum values set
by the duration range parameter depend upon the
rhythmic behavior; musically meaningful
minima and maxima depend upon the particular
types of rhythms created. In general the ranges
are intuitively defined to correspond with a
rough scale from presto to largo.

Figure 1: Display of timebase information. "Range" is a
value from 1 to 10; "duration" is the current value in msec.

Once activated with a rhythmic behavior and a
duration range, the timebases broadcast
messages (one per rhythmic event) specifying
their next duration in milliseconds. The
performer then turns on the various synthesis
sources and signal processing modules by
assigning them to "listen" to a specific timebase.

Modules within the same signal chain can each
be assigned to different timebases. This produces
a situation where different timbral features of a
composite sonic event have independent
rhythmic identities – a kind of “timbral
polyrhythm.” On the other hand, multiple
sources and modules can be assigned to receive
messages from a single timebase. Since there are

only nine timebases, complex configurations of
modules inevitably involve some shared
rhythmic aspects. Polyrhythmic independence,
counterpoint, and synchrony are all possible.

As each source or signal processing module
receives duration messages, it algorithmically
generates all its necessary parameters. With
continuously-varying parameters, the duration
value is used as a ramp time to create linear or
curved transitions from one parameter value to
the next. The actual algorithm used varies from
module to module and parameter to parameter.
Many parameters are generated through first- or
second-order random walk processes, but other
kinds of algorithmic logic also apply. For
instance, the frequency parameters for most of
the synthesis sources use a pitch equivalent of
the "reservoir" timebase, with the next frequency
chosen from a small, incrementally varied set of
possible values.

4 User Interface
The performer's main role is to control the
parameters (rhythmic behavior and duration
range) for each of the nine timebases, and to
activate and deactivate synthesis sources and
signal processing modules by syncing them to
the timebases. In addition, the performer can
control which synthesis types are used by the
four sources, set the strength of feedback
connections across the network, and generate
random values for specific groups of parameters.
All these actions are triggered via the QWERTY
keyboard, with related functions mapped along
rows of keys to facilitate the performer’s
learning curve.

Most actions are specified via three keystrokes.
The first keystroke, from the top row of the
keyboard, specifies the parameter group in use.
The "`" key selects the timebases, the "1"
through "4" keys select each of the four
synthesis sources, and the "5" through "8" keys
select the four signal processing chains
associated with those sources. For timebases, the
second keystroke (from the second row of keys)
specifies the particular timebase to be
configured, with "q" representing timebase one
and "o" representing timebase nine; the third
keystroke then sets the duration range (mapping
the row of keys "a" through "l" to ranges one
through ten) or the rhythmic behavior (with the
row of keys "z" through "/" selecting one of the
ten behaviors). The pattern is similar for
synthesis sources, with the row of keys from "q"
to "p" specifying which of the ten synthesis
types will be used, and the "a" through "l" row
identifying the timebase to respond to. (In all

cases, the performer doesn't need to repeat the
first or even second keystroke for additional
actions, as long as the parameter group or
parameter remains the same).

Figure 2: Display of synthesis source information. "Tbase"
is the active timebase for each source; "duration" is the
current duration for that timebase in milliseconds.

For the signal processing chains, the second
keystroke (from the "q" through "p" row) selects
a particular module. The third keystroke then
syncs that module to a timebase (using the "a"
through "l" row to specify timebases one through
nine), or sets the amplitude coefficient for the
feedback input to that module (with "z" turning
feedback off, and "x" through "/" specifying
geometrically increasing values from 0.0125 to
3.2). The feedback coefficients for input from
adjacent signal chains are accessed with the "["
and "]" keys, with "z" through "/" again
specifying the coefficient values.

Figure 3: Display of signal processing chain information.
The rightmost column displays the feedback coefficients at
the input of each module.

The randomization functions can be accessed
through a single keystroke (in combination with
the shift key). All from the top row of the
keyboard, "~" randomizes all the timebase
parameters, while "!" through "$" randomizes
the parameters for each of the four synthesis
sources. The "%" through "*" keys apply a
masked randomization to each of the four signal-
processing chains, with some timebase values
and feedback coefficients altered, and some left
as-is; "(" through "+" randomize all the
parameters for their particular signal chains. In

both types of randomization, there is a bias
towards deactivating signal processing elements
- if too many elements are activated, the
computing resources, the performer, or both can
be overwhelmed. Finally, the "delete" key
randomizes all the user interface parameters - a
useful way to create a sharp sectional contrast, or
to create a unexpected situation.

Visual feedback about the state of the
environment is provided through a number of
tabular displays (examples are shown in Figures
1-3). A performance timer and VU meters for
each of the four signal chains are additional
conveniences.

5 Assessment
The control scheme for Kepler's Monsters is
necessarily quite high-level; there are simply too
many parameters to expose them all to the
performer. While pitch can only be controlled
indirectly, the timebase design provides the
performer with substantial control over the
rhythmic and textural behavior of the system.
Relative to its sister project Lattice, the keyboard
interface is more challenging to navigate; where
Lattice actions are triggered with one keystroke,
most Kepler's parameter changes require three.
However, the learning curve is still quite
reasonable. Kepler's Monsters is musically and
intellectually demanding to perform, but with
rehearsal, the interface itself becomes
transparent.

The feedback network produces rich, articulate
synthesis, facilitates timbral diversity, and offers
the kind of surprising behavior desired for the
system. (The role of feedback in the system can
be made even more prominent if the synthesis
sources are turned off after the network is seeded
with some audio). Since the four signal
processing chains can be held independent or
interconnected, the performer can create
complex polyphonic textures, or relate materials
into a larger composite.

The feedback network is unpredictable without
being out of control. In his discussion of
desirable qualities for digital musical
instruments, Sergi Jorda writes, "non-linearity
should not inhibit the performer from being able
to predict the outputs related with small control
changes, which seems necessary for the
development of a finely tuned skill and an
expressive control.... A balance between
randomness and determinism, between linear
and non-linear behaviors, needs therefore to be
found" [Jorda 04b]. Kepler's Monsters satisfies

this criterion, with surprising but also
manageable behavior. If the performer desires
additional unpredictability, the parameter
randomization functions are available.

Kepler's Monsters occupies a middle position
between "composition" and "instrument" - hence
its description as an "improvisation
environment." The work is considerably less
specific than we usually understand the term
"composition": the software is useful both in
solo performance and ensemble improvisation,
and two performances can potentially sound
quite different from one another. At the same
time, the software doesn't offer the stylistic
breadth (Jorda's term is "diversity") we expect
from an acoustic instrument. For this composer,
the middle ground is the most interesting space
to occupy - why not design the instrument and
its music at the same time, and allow each to
inform the other?

Acknowledgements
Special thanks to Steve Nelson-Raney.

References
[Burns 03] Burns, C. "Emergent Behavior from
Idiosyncratic Feedback Networks'', Proceedings
of the International Computer Music
Conference, 2003.

[Burns 05] Burns, C. "Lattice: Strategies for and

against control in an improvisation instrument,"
Proceedings of the International Computer
Music Conference, 2005.

[Chowning 73] Chowning, J. "The Synthesis of
Complex Audio Spectra by Means of Frequency
Modulation," Journal of the Audio Engineering
Society, vol. 21, no. 7, pp. 526-534, 1973.

[Jorda 04a] Jorda, S. "Digital Instruments and
Players: Part I – Efficiency and Apprenticeship,"
Proceedings of the New Instruments for Musical
Expression Conference, 2004.

[Jorda 04b] Jorda, S. "Digital Instruments and
Players: Part II – Diversity, Freedom, and
Control," Proceedings of the International
Computer Music Conference, 2004.

[Kuivila 04] Kuivila, R. "Open Sources: Words,
Circuits, and the Notation-Realization Relation
in the Music of David Tudor," Leonardo Music
Journal, vol. 14, pp. 17-23, 2004.

[Lewis 00] Lewis, G. "Too Many Notes:
Computers, Complexity, and Culture in
Voyager," Leonardo Music Journal, vol. 10, pp.
33-39, 2000.

[Puckette 96] Puckette, M. "Pure Data: another
integrated computer music environment,"
Proceedings of the International Computer
Music Conference, 1996.

